Audit Report

pTokens Bridge pBTC on EOS

APRIL 24 2020



Disclaimer

THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT
REPRESENTATIONS AND WARRANTIES OF ANY KIND.

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

This audit has been performed by
Philip Stanislaus and Stefan Beyer

Cryptonics Consulting S.L.
Ramiro de Maeztu 7

46022 Valencia

SPAIN

https://cryptonics.consulting/
info@cryptonics.consulting



https://cryptonics.consulting/

Summary of Findings

No

10

"

12

13

14

15

16

17

Description

EOS block submission does not enforce submission of
blocks with schedule/producer set changes

EOS block validation in core-private does not check
whether block has been confirmed by enough
producers

Private keys can be read directly from the database
Private keys are public on EosPrivateKey struct

Private keys might remain in memory

EOS block validation does not check whether producer
is assigned to current slot

DB keys/constants are the same in both btc_on eth
and btc _on eos

Linear memory increase of tx ids list
Rust code can panic

Nightly toolchain

Code duplication

Segwit not supported

eos-action-proof-maker does not validate block
header and individual actions

get latest block numbers does not return latest
EOS block number

EOS block fetching is missing in
eos—-and-btc-block-getter

No linter used in Rust codebase

Open TODOs in the codebase

Severity

Major

Medium

Medium

Medium

Medium

Informational

Informational

Informational

Informational

Informational

Informational

This report contains 17 findings on 14 pages (plus one cover page).

Status

Acknowledged

Acknowledged

Resolved
Resolved
Resolved

Resolved

Acknowledged

Acknowledged
Resolved

Acknowledged
Acknowledged
Acknowledged

No issue

Resolved

Resolved

No issue

No issue



Introduction

Purpose of this Report

Cryptonics Consulting has been engaged to perform an audit of the pTokens Bitcoin to EOS
2-way asset transfer bridge, forming part of the pTokens project (https://ptokens.io/).

The objectives of the audit are as follows:

1. Determine the correct functioning of the implementation in accordance with the
project specification.
Determine possible vulnerabilities, which could be exploited by an attacker.
Determine bugs, which might lead to unexpected behavior.
Analyze whether best practices have been applied during development.
Make recommendations to improve code safety and readability.

a bk wnN

This report represents the summary of the findings.
As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected

execution paths may still be possible. The authors of this report do not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit

The smart contract code has been provided by the developers in form of a compressed
source code archive with the following SHA-256 hash:

pbtc-on-eos-for-auditors.zip
T£ffe02b3fefc8227£846696aa99038728£5e96cb2b775£1b505e5b742e2e883

Subsequent fixes to the core where provided in a second compressed source code archive:

ptokens-core-for-audit.zip
ceac63aa’74d0d0114a259402e6e8e19fd2b173d33aeleadbb2ca%lc22af46286


https://ptokens.io/

Methodology

The audit has been performed in the following steps:
1. Gaining an understanding of the code base’s intended purpose by reading the
available documentation.
2. Automated source code and dependency analysis.
3. Manual line by line analysis of the source code for security vulnerabilities and use of
best practice guidelines, including but not limited to:
a. Race condition analysis
b. Under-/ overflow issues
c. Key management vulnerabilities
4. Report preparation



Project Overview

The submitted code provided in 11 modules implements a cross blockchain bridge that allows
assets to be moved between Bitcoin to EOS. Bitcoin is represented on EOS as pBTC.

The two-way peg works by depositing (locking) BTC on Bitcoin and minting pBTC on EOS and
by burning pBTC on EOS and unlocking BTC on Bitcoin. Transactions are relayed across
chains through light clients designed to operate in a secure enclave.

The enclave is designed to be executed in a protected enclave using a trusted execution
environment, such as Intel SGX.



Findings

1. EOS block submission does not enforce submission
of blocks with schedule/producer set changes

Severity: Major

submit eos block to corein
core-private/src/btc _on eos/eos/submit eos block.rs does not enforce that
it receives blocks with schedule changes. This allows blocks to be accepted from a block
producer that has been removed from the schedule, opening the possibility of double
spending.

Recommendation

Fail if a block is submitted for a schedule that has not been confirmed by a block with
schedule changes.

Status: Acknowledged

Due to lack of library support caused by moving schedule changes into

header extenison in EOS 2.0, the current version does not support parsing schedule
changes. The issue described above is currently worked around by supplying schedule
changes in a semi-trusted manner.



2. EOS block validation in core-private does not
check whether block has been confirmed by enough
producers

In the current implementation, core-private processes the supplied EOS block without
any checks for it’s finality. This means that the core could be currently looking at a fork that
might not end up in the canonical chain, leading to an inconsistent database or even to
double spending. While this issue is mitigated by the fact that the current implementation of
eos-syncer filters actions by for irreversibility in
eos-syncer/lib/get-redeem-actions.js: 36, it adds a dependency on that
component working as expected, requiring an additional trusted component in the system.

Recommendation

Only process irreversible blocks in core-private. Until realtime BFT has been added to
EOS, the best approach is to track the finalized block (called last irreversible block or LIB in
EOS) by ensuring that %5 + 1 block producers (15 out of the 21) have confirmed the current
chain.

Status: Acknowledged

The current implementation of relying on eos-syncer to supply only irreversible blocks is
intended for the alpha version of the bridge only. It is intended to submit blocks with relevant
actions along with the subsequent blocks required for that relevant block to achieve
irreversibility in order that the core knows that the block in question has reached finality.

3. Private keys can be read directly from the database

With the exposed function get eos private key from dbin
core-private/src/btc _on eos/eos/eos database utils.rs:211 private key
can directly be read from the database.

Recommendation

Invert the control flow by passing the database as a parameter to an associated function
read from database onthe EosPrivateKey.

Status: Resolved



4. Private keys are public on EosPrivateKey struct
Severity: Medium

The private key fieldis public onthe EosPrivateKey structin
core-private/src/btc _on eos/eos/eos crypto/eos private key.rs:34.

Recommendation

Make the private key field private. Instead of put eos private key in db, defined
incore-private/src/btc on eos/eos/eos database utils.rs:201 usethe
write to database method on PrivateKey and delete the no longer needed

put eos private key in db function.

Status: Resolved

5. Private keys might remain in memory
Severity: Medium

The current implementation of the std: :ops: : Drop trait for BtcPrivateKey and
EthPrivateKeyin
core-private/src/btc _on eos/btc/btc crypto/btc private key.rs:127,
core-private/src/btc on eth/btc/btc crypto/btc private key.rs:127
and
core-private/src/btc _on eth/eth/eth crypto/eth private key.rs:92
could panic through calling expect (.. .).A panic in Drop might lead to a missed drop. This
could lead to exposure of sensitive data through memory that is not overwritten.

Recommendation

Match the Result and use a hard-coded value to zero the memory instead of panicking.

Status: Resolved



6. EOS block validation does not check whether
producer is assigned to current slot

validate block header signaturein
core-private/src/btc_on_eos/eos/validate_signature.rs:138 currently
checks whether the block producer is in the currently scheduled set of active producers, but it
does not check whether the producer is assigned to produce a block at the current block
height.

Recommendation

Follow EOS’ algorithm to check whether the block producer is assigned to the current slot.

Status: Resolved

Added check here:
core-private/src/btc_on eos/eos/validate producer slot.rs:46

7. DB keys/constants are the same in both
btc on ethandbtc on eos

The DB keys/constants are the same in
core-private/src/btc _on eos/btc/btc constants.rs and
core-private/src/btc_on eth/btc/btc _constants.rs aswell as
core-private/src/btc_on eos/utxo manager/utxo constants.rs and
core-private/src/btc _on eth/utxo manager/utxo constants.rs, which
could lead to problems when the same database is used for both enclaves.

Recommendation

Use unique constants across enclaves.

Status: Acknowledged

Partially resolved, except for UTXO constants. It is planned to mitigate this issue in the near
future.



8. Linear memory increase of tx ids list

maybe add tx ids to processed tx idsin
core-private/src/btc _on eos/eos/add tx ids to processed list.rs:38
does add more and more tx ids to the database over time, without ever pruning the state. This
means that memory consumption of the enclave increases linearly over time, which could
lead to the enclave crashing at some point.

Recommendation

Add state pruning to the processed tx ids list.

Status: Acknowledged

It is planned to mitigate this issue by implementing more efficient data structures for
processed key tracking.

9. Rust code can panic

In one place, the Rust code can panic. It is generally preferred to use Results instead:
- core-private/src/btc_on eos/eos/eos_hash.rs:70

Recommendation

Use an empty hash if parsing fails and add corresponding checks for emptiness where the
type cast is used.

Status: Resolved

10



10. Nightly toolchain

The nightly toolchain is currently used. Secure applications should be developed with the fully
stable toolchain.

Recommendation

Switch to the stable toolchain. Support for the ? operator on Option has been added in Rust
1.22:
https://doc.rust-lang.org/edition-guide/rust-2018/error-handling-and-panics/the-question-mark-
operator-for-easier-error-handling.html

Status: Acknowledged

Automatic conversion between Option and Result is used across the codebase, which
depends onthe try trait, afeature not currently in the stable toolchain.

11.Code duplication

There is duplicated code in multiple places across the codebase, most notably between
core-private/src/btc_on eos and core-private/src/btc_on eth. This
duplication has been documented in core-private/src/notes. While thisis not a
vulnerability per se, it makes the codebase hard to maintain and increases the likelihood of
bugs being introduced by changes that are not applied consistently across the duplicates.

Recommendation

Extract shared behaviour into shared crates/packages. Use a tool like duplo to find code
duplication.

Status: Acknowledged

Refactoring of code has begun but not finished before the audit report was released.

12. Segwit not supported
Severity: Informational
Segwit is currently not supported, which is properly documented in code and documentation.

Status: Acknowledged

1


https://doc.rust-lang.org/edition-guide/rust-2018/error-handling-and-panics/the-question-mark-operator-for-easier-error-handling.html
https://doc.rust-lang.org/edition-guide/rust-2018/error-handling-and-panics/the-question-mark-operator-for-easier-error-handling.html
https://github.com/dlidstrom/Duplo

13. eos-action-proof-maker does not validate
block header and individual actions
Severity: Informational

As stated in eos-action-proof-maker/README.md, eos-action-proof-maker
does not currently validate the block header and individual actions.

Recommendation

Validating the block header and individual actions increases robustness by guaranteeing that
data is not corrupted, but it does not increase the security of the tool. If a bad actor can
tamper action data by modifying the action mroot, they can likewise also modify the
block’s hash and the actions such that a validation step passes. This would just shift the trust
required one level up.

Status: No issue

14. get latest block numbers does not return
latest EOS block humber

Severity: Informational

get latest block numbersin
core-private/src/btc _on eos/get latest block numbers/mod.rs:13
currently does not return the latest EOS block number.

Status: Resolved

12



15. EOS block fetching is missing in
eos-and-btc-block-getter

Severity: Informational

eos—-and-btc-block-getter does currently not contain functionality to get EOS blocks.

Recommendation

Add eos block fetching.

Status: Resolved

16. No linter used in Rust codebase
Severity: Informational
Currently, no linter is used in the Rust parts of the codebase.

Recommendation

Add a linter with a custom configuration that sticks to the maintainers preferences (e. g.
line-width), see https://rust-lang.github.io/rustfmt/.

Status: No issue

17. Open TODOs in the codebase

Severity: Informational

There are TODOs in the codebase that should be resolved:
- api-server/lib/get-info-route.js:38,44
- api-server/lib/utils.js:16
- app/README.md
- app/src/main.rs:18
- btc-syncer/README.md
- core-private/README.md
- core-private/src/lib.rs:13-15
- core-private/src/btc _on eos/check core is initialized.rs:53,7
2
- core-private/src/btc _on eos/crypto utils.rs:72
- core-private/src/btc on eos/utils.rs:25,35,84,103,178

13


https://rust-lang.github.io/rustfmt/

- core-private/src/btc_on eos/btc/filter p2sh deposit txs.rs:15
5

- core-private/src/btc_on eos/btc/parse minting params from p2s
h deposits.rs:22

- core-private/src/btc_on eos/btc/parse minting params from p2s
h deposits.rs:121

- core-private/src/btc _on eos/btc/parse submission material.rs:
153

- core-private/src/btc _on eos/btc/btc test utils/mod.rs:319

- core-private/src/btc_on eos/debug functions/mod.rs:1-2

- core-private/src/btc on eos/eos/filter irrelevant proofs.rs:4
-

- core-private/src/btc_on eos/eos/parse redeem params.rs:23

- core-private/src/btc _on eos/eos/parse submission material.rs:
378

- core-private/src/btc _on eth/check enclave is initialized.rs:3
6

- core-private/src/btc _on eth/btc/parse minting params from op
return deposits.rs:427

- core-private/src/notes

- db-repl/README.md

- eos-action-proof-maker/README.md

- eos-action-proof-maker/src/eos merkle utils.rs:76

- eos-action-proof-maker/src/parse eos block.rs:16

- eos-action-proof-maker/src/types.rs:72,81,84

- eos-syncer/eos-syncer.js:94,95

- eos-syncer/lib/constants.js:8

- eos-syncer/lib/get-redeem-actions.js:9

- tx-broadcaster/README.md

Recommendation
Resolve TODOs.

Status: No issue

Open tasks affect maintainability, not security.

14



